
ddrescue-tui � A Terminal UI for ddrescue

Simon Moser

University of Freiburg, Freiburg, Germany

Abstract. This paper presents ddrescue-tui, a terminal user interface
for the data recovery utility ddrescue. The tool allows users to visualize
the status of disk blocks during the rescue process, as well as to start
and control ddrescue from the terminal. The tool parses the map �les
generated by ddrescue and plots them as heat maps using matplotlib. It
also uses the textual framework to create an interactive and user-friendly
interface. The paper describes the implementation details, the function-
alities, and the project management aspects of the tool. It concludes with
some limitations and future directions for the tool.

Keywords: ddrescue · terminal · parsing · visualization

1 Introduction

GNU ddrescue1 is a data recovery utility that allows the transfer of data from one
�le or block device (such as hard disks, CD-ROMs, etc.) to another. Unlike the
eponymous tool dd, it focuses on the retrieval of undamaged parts in the event
of read errors. The basic operation of ddrescue is fully automated, eliminating
the need for manual error handling or program restart.

Themap�le, a unique feature of ddrescue, is a core feature for its e�ciency.
The map�le allows data to be retrieved e�ciently by reading only the necessary
blocks. It also allows to interrupt the rescue process at any point and resume
later at the same point.

ddrescueview2 is a graphical interface for ddrescue map�les. It visualizes
ddrescue's map�les via a user-friendly GUI. The main view shows a grid, with
the colour of each cell indicating the rescue status of the blocks it represents.

Both tools are used for data recovery, both in private and professional envi-
ronments, for example in IT forensics[7, p. 130].

However, these tools are not always executed on a system with a graphical
user interface. In forensic applications, for example, it is common to work mainly
under Windows, as professional software is sometimes only supported there.
However, as ddrescue requires a unix-like operating system, a small separate
Linux is often used for this purpose, which in some cases does not o�er a graphical
user interface.

1 GNU ddrescue: https://www.gnu.org/software/ddrescue/, hereinafter referred to
as ddrescue, not to be confused with the older dd_rescue

2 ddrescueview: https://sourceforge.net/projects/ddrescueview/

https://orcid.org/0009-0003-4916-9317
https://www.gnu.org/software/ddrescue/
https://sourceforge.net/projects/ddrescueview/


2 S. Moser

ddrescue itself is a command line application, so there is mainly a need for
another application that visualises map�les on the terminal and thus provides
more precise information on the progress of a backup. The implementation of
this other application is described in the following sections, starting with the
parsing of the map�les.

1.1 Writing process

In the writing process of this report, arti�cial neural networks were used for
selected and individual purposes.

The online translation service DeepL, which according to the company is
based on machine-learning methods such as Transformers and Convolutional
Neural Networks, was used as a formulation aid.

LLMs, speci�cally ChatGPT with GPT-4, were inter alia used to simplify
the manual creation of latex code such as tables and bibliography entries and
for generating the abstract, however everything was still corrected and adjusted
by hand.

2 Parsing map�les

2.1 Map�le structure

Map�les created by ddrescue use a compact text format to store meta infor-
mation about the data rescuing process and the information about the rescuing
status of blocks[3]. A simple exemplary map�le is shown below.

1.125

Listing 1: Example map�le

1 # Mapfile. Created by GNU ddrescue version 1.27

2 # Command line: ddrescue /dev/sdb sdb.img sdb.map

3 # Start time: 2024-02-08 06:56:57

4 # Current time: 2024-02-08 06:56:59

5 # Copying non-tried blocks... Pass 1 (forwards)

6 # current_pos current_status current_pass

7 0x00970000 ? 1

8 # pos size status

9 0x00000000 0x02200000 +

10 0x02200000 0x00000001 -

11 0x02200001 0x3F690000 ?

The map�le consists of three main parts:
The heading comments comments provide metadata about the map�le,

as the version of ddrescue or ddrescuelog that created it, the command-line
parameters used during the operation and the start time of the program. If it
was created by ddrescue, it also includes the current save time and a copy of the
status message from the screen (e.g., copying, trimming, �nished).



ddrescue-tui � A Terminal UI for ddrescue 3

The �rst non-comment line, the status line, contains the position being
tried in the input �le, a status character indicating the type of operation (e.g.,
copying, trimming, scraping) and a positive integer denoting the current pass
in the current phase. The status line helps e�cient resumption of copying or
retrying phases.

The other non-comment lines each describe a data block, containing the
starting position of the block in the input �le, the size of the block in bytes and
a status character indicating the block's state (e.g., copied, trimmed, scraped).

2.2 Parsing in Python

The Python function parse_mapfile implemented in ddrescue_tui_parser.py
is designed to parse such map�les. It takes as input the path to the map�le and
the desired resolution for the output array. The function performs several steps
of validation and parsing, using the module numpy[5]:

� It checks the validity of the input parameters. If the �le path is not valid or
the resolution parameters are not integers greater than 1, it returns with an
error message.

� It opens the map�le and reads it line by line, distinguishing between com-
ment lines and data lines. The �rst line is used to check whether the opened
�le is actually a map�le, otherwise the function returns an error message.

� It parses the comment lines to extract general information about the process,
such as the version of ddrescue that created the map�le, the command-
line parameters used and the direction of the reading process (forwards or
backwards).

� It parses the data lines to create custom MapEntry objects, each representing
a block of data. The MapEntry object has a position, size, and status, which
are extracted from the data line. The status converted to a numerical value,
which can later be used for plotting the information.

� After parsing all lines of the map�le, the function sorts the list of MapEntry
objects by position to retrieve information about the total size from the
last block of data. It then transforms this list into a 1D numpy array with
the length of the desired plot resolution, with each element representing the
status of multiple disk blocks. As the resolution of the plot is usually several
orders of magnitude smaller than the number of blocks on the disk, some
information is lost when the status is compressed in this way. The highest
numerical status value determines which status a compressed block receives;
the values were assigned in such a way that the most interesting information
is retained in the author's opinion.

� Finally, the function reshapes the 1D numpy array into a 2D numpy array
based on the provided resolution. It also updates the current position in the
array based on the current position given in the map�le.

The function returns the 2D numpy array and a dictionary containing the
general information. This information will be used to visualize the status of
di�erent blocks of data in a disk imaging process and provide context about the
process, as described in the following sections.



4 S. Moser

3 Plotting parsed block information

In the next step, the parsed 2D-array is plotted in ddrescue_tui_plotter.py.
This code uses the module matplotlib[6] to generate a plot and PIL[2] to load
the generated plot into the memory.

The plot is generated as a heat map with matplotlib.pylot.imshow. Each
numerical value of the 2D array representing the rescueing status from the pars-
ing step is assigned a colour value via the COLORS constant. The plot is set up
without any decorators such as labels or ticks and then drawn in memory using
the �gure's canvas.draw function.

Using the �gure's canvas.get_renderer().buffer_rgba, a binary represen-
tation of the plot is copied from memory and loaded using PIL's Image.frombytes.
Finally, the remnants of the plot are cleaned up and the PIL image is returned
for display. The following section described how the display was implemented in
a terminal application.

4 Terminal User Interface (TUI)

The tool was developed as a terminal UI (TUI) as opposed to a graphical UI
(GUI). In order to function well in any type of console, two di�erent modes have
been developed. The �le ddrescue_tui.py o�ers the CLI entry point and de�nes
its arguments using argparse. It decides which mode described in the following
subsections is called, either from the command line parameter noninteractive
or by checking whether stdin is a tty.

4.1 Non-interactive mode

The non-interactive mode (see �g. 1 on the facing page) only o�ers the function
to visualise a map �le.

The previously described functions for parsing and plotting are used to re-
trieve and plot image object.

This object is then printed to the terminal using the module rich_pixels.
There are two methods in this module to print images, one from an image �le and
one from an image object. However, the method to print from an image object
does not implement the possibility to resize the image, so it was necessary to
use the protected method Pixels._segments_from_image which can handle the
resizing.

The image is printed together with general status information and re-displayed
at an interval speci�ed in command line arguments using an in�nite loop and
time.sleep.

4.2 Interactive-mode

The interactive mode o�ers a range of additional functions. When called, you can
specify whether a map �le should be visualised (and at what initial interval) or



ddrescue-tui � A Terminal UI for ddrescue 5

Fig. 1. Non-interactive output of a map�le

whether ddrescue should be started (including all associated parameters, root
permissions are required here). In addition, ddrescue-tui can also be started
without further speci�cations.

The �rst tab of the interactive TUI (see �g. 2 on the next page) visualises
a map �le, shows some additional status information from it and allows you to
change the reload interval during runtime.

The second tab (see �g. 3 on page 7) is only available if the programme was
executed with root privileges. Here, ddrescue can be started with a form or the
command of a running ddrescue is displayed here.

Last but not least, the TUI o�ers both a light and a dark mode, which can
be switched at runtime.

The interactive TUI code is split in two additional �les.

First of all, ddrescue_tui_app.py is called. It de�nes the main TUI applica-
tion using the textual framework3 and implements all top-level functions that
need access to di�erent parts of the application, like e.g. listeners for buttons.
Also, the start of ddrescue is done here in the function run_ddrescue. The
modules queue and threading are used to provide a non-blocking IO reading
from stdout of the ddrescue process started with the modules subprocess.

Last but not least, ddrescue_tui_widgets.py contains customized widgets
of the textual framework. The StatusWidget utilizes the frameworks reactive
attributes, that trigger a redraw of a widget when the attribute changes, to
display and update status information. The PixelWidget allows to display a
simpli�ed image on the console using the module rich-pixels4 which is also
developed by the textual developers. It uses the same mathod as described in
section 4.1 on the preceding page to regularly draw the plot into the widget.

3 textual: https://textual.textualize.io/
4 rich-pixels: https://github.com/darrenburns/rich-pixels

https://textual.textualize.io/
https://github.com/darrenburns/rich-pixels


6 S. Moser

Fig. 2. Interactive output of a map�le

5 Project management with CI/CD

For the management of the project, two GitHub Actions work�ows[1, p. 8] are set
up, qa and build. Every work�ow runs on a container speci�ed in the respective
YAML �le and de�nes one or more jobs that each consist out of steps that are
either prede�ned (e.g. actions/checkout@v45 for checking out the repository)
or just terminal commands (e.g. pip install . to install requirements).

The work�ow qa is de�ned in .github/workflows/qa.yml. It is executed
on every push event and starts two di�erent jobs. The job unittests runs the
unit tests stored in the directory test using di�erent supported Python versions.
The unit tests are written manually to assure that certain code units function
as intended. The job qodana on the other hand triggers a run of the external
static code analysis platform Qodana6. Qodana is checking the code for read-
ability, maintainability and security issues. Additionally, checks for vulnerable
libraries and the compatibility of the open source licences of the libraries used
are activated. A badge in the README shows the status of the last work�ow
execution.

The work�ow build, de�ned at .github/workflows/build.yml, is executed
when a tag is pushed. It consists of a single job that installs all requirements and

5 actions/checkout: https://github.com/actions/checkout
6 Qodana: https://www.jetbrains.com/qodana/

https://github.com/actions/checkout
https://www.jetbrains.com/qodana/


ddrescue-tui � A Terminal UI for ddrescue 7

Fig. 3. Form to run ddrescue from the TUI

uses the module build to create a binary wheel. After successful build, a release
is automatically created with the binary wheel and the source code attached.

Another GitHub feature that was tried out for the project was dependabot[4]
which was con�gured in /.github/dependabot.yml. It checks for vulnerable
libraries as well, creates issues for them and if possible provides pull requests with
the update. The con�guration includes the packaging ecosystem, the checking
interval and ignored packages.

6 Conclusion

The project achieves the main goal of visualising ddrescue map�les on both in-
teractive and non-interactive terminals. In addition, it provides further function-
alities on interactive terminals, such as adjusting the update interval at runtime
or starting ddrescue both as a command line parameter and via the UI.

This is also where most of the opportunities for improvement lie: ddrescue
is executed in parallel to the TUI, which causes some di�culties with the live
display of the stdout output in the TUI that have yet to be addressed.

Additionally, an option to load a (di�erent) map�le from inside of the UI
would improve the usability



8 S. Moser

Furthermore, it would be preferable if the entire programme did not have
to run with root permissions to execute ddrescue, but only this where it is
necessary. However, a way to implement this still needs to be found.

Last but not least, there is also room for improvement in terms of user-
friendliness, such as giving the option of installing via the Python Package Index
with pip, o�ering more functionality as execution piped from a ddrescue run or
colorless output or also just improving the documentation.

The plan here is to transfer the project from the course repository to a
personal repository in order to make it publicly accessible and ensure further
development.

References

1. Chaminda Chandrasekara, P.H.a.: Hands-on GitHub Actions: Implement CI/CD
with GitHub Action Work�ows for Your Applications. Apress (2021)

2. Clark, J.A.: Python Imaging Library Handbook. readthedocs.io (2024), https://
pillow.readthedocs.io/en/stable/handbook/

3. Diaz, A.D.: GNU ddrescue Manual. GNU (2024), https://www.gnu.org/software/
ddrescue/manual/ddrescue_manual.html, version 1.28

4. GitHub, I.: Keeping your supply chain secure with Dependabot (2024), https:
//docs.github.com/en/code-security/dependabot

5. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cour-
napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer,
S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R'�o, J.F., Wiebe, M., Peter-
son, P., G'erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H.,
Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825),
357�362 (2020). https://doi.org/10.1038/s41586-020-2649-2

6. Hunter, J.D.: Matplotlib: A 2d graphics environment. Computing in science & en-
gineering 9(3), 90�95 (2007)

7. Pawlaszczyk, D.: Digitaler Tatort, Sicherung und Verfolgung digitaler Spuren, pp.
113�166. Springer (2017)

https://pillow.readthedocs.io/en/stable/handbook/
https://pillow.readthedocs.io/en/stable/handbook/
https://www.gnu.org/software/ddrescue/manual/ddrescue_manual.html
https://www.gnu.org/software/ddrescue/manual/ddrescue_manual.html
https://docs.github.com/en/code-security/dependabot
https://docs.github.com/en/code-security/dependabot
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2


ddrescue-tui � A Terminal UI for ddrescue 9

Topics Implementation

Linux The tool is developed for Linux, but apart from the peculiarities of
di�erent terminal emulators, there were no special problems that
were dealt with

Text editor Text editors and IDEs were used to develop the tool, but not in
any special way.

Git During development, the various possibilities of CI/CD with
GitHub were explored, such as GitHub Actions.

Docker Apart from GitHub Actions, containerization was not used.
Automation The whole application is written in Python, especially the parsing

of map�les which is described in section 2 on page 2.
matplotlib Utilized for the generation of diagrams showing the rescuing status

of ddrescue, as described in section 3 on page 4.
The report was composed in , but there are no speci�c details to
mention.

LLM LLMs were used for selected individual purposes in the prepara-
tion of the report, see section 1.1 on page 2 for details.


	ddrescue-tui – A Terminal UI for ddrescue

